Quantcast
Channel: Next - Flux Complet
Viewing all articles
Browse latest Browse all 1069

On développe et entraine une IA, avec seulement 10 lignes de code !

$
0
0
Vous ne saviez pas quoi faire ce week-end ?
intelligence artificielle tenant le crachoir à un personnage joueur décédé d'ennui

Les IA sont souvent présentées comme des boîtes noires, ce qui est partiellement vrai… et donc aussi partiellement faux. Plutôt que d’ouvrir la boîte et d’essayer de comprendre comment ça marche, prenons le problème à l’envers. Créons notre propre boîte noire intelligence artificielle. Pour y arriver, 10 lignes de code suffisent, même avec des dizaines de neurones et plusieurs couches. On vous détaille le principe, étape par étape.

Après avoir détaillé le fonctionnement d’un neurone artificiel, nous allons en utiliser plusieurs pour créer et entrainer une intelligence artificielle. C’est à la portée de tous, sans avoir besoin de connaissances ou d’installer des programmes en particulier. Une connexion à Internet et un navigateur sont suffisants.

Première étape : un notebook sur Google Colab

Dans le cadre de notre petite démonstration, nous utilisons Google Colab (Colaboratory), un compte Google sera donc nécessaire. Colab permet d’héberger sur les serveurs de Google des notebooks Jupyter. On peut y écrire du code Python et l’exécuter directement depuis son navigateur, sur les serveurs de Google. Le fonctionnement est très simple et vous pouvez aussi utiliser d’autres notebooks si vous le désirez.

Google Colab dispose de tout ce dont nous avons besoin pour nous lancer dans l’intelligence artificielle. Il permet aussi d’exécuter notre code, au choix, sur des CPU, des GPU ou des TPU (Tensor Processing Unit pensés pour l’intelligence artificielle).

Une fois sur le site de Google Colab, cliquez sur « New Notebook » pour arriver sur un notebook vierge où il suffit de copier/coller les lignes de code que nous allons vous donner et expliquer.

Tensorflow, keras et un jeu de données (MNIST)

Remarque très importante pour ce petit tuto : nous allons à peine effleurer le développement d’une intelligence artificielle, mais nous aurons l’occasion de rentrer davantage dans les détails par la suite. On s’est dit que commencer par la partie pratique avant de se pencher sur la théorie (les calculs de matrices, les dérivées…) pourrait vous permettre de directement mettre les mains dans le cambouis et de comprendre, dans les grandes lignes, comment fonctionne une IA.

Bien évidemment, nous allons nous appuyer sur des bibliothèques existantes pour créer notre IA, on ne part pas d’une feuille blanche. Première chose dont nous avons besoin : Tensorflow, un outil open source d’apprentissage automatique développé par Google. Deuxième élément qui va avec le premier : keras, une « API de haut niveau de TensorFlow permettant de créer et d’entraîner des modèles de deep learning ».

Enfin, il nous faut des données, un élément indispensable pour une intelligence artificielle, comme on le répète à longueur d’actu sur les IA. Par défaut, une intelligence artificielle ne sait rien faire. Nous allons en développer une capable de reconnaitre des chiffres de 0 à 9. Il faut donc d’abord lui donner des séries d’images étiquetées, c’est-à-dire avec une légende précisant quel chiffre se trouve dans l’image.

Nous utilisons pour cela la base de données MNIST (Modified ou Mixed National Institute of Standards and Technology). Elle comprend 60 000 images d’apprentissage et 10 000 images de test pour vérifier les performances de son programme. Les images sont en noir et blanc et de petite taille (28 x 28 pixels).

Et si on se lançait ? Trois lignes pour préparer le terrain


Vous devez être abonné•e pour lire la suite de cet article.
Déjà abonné•e ? Générez une clé RSS dans votre profil.


Viewing all articles
Browse latest Browse all 1069

Trending Articles